Dimensionierung kurzer, horizontal belasteter Pfähle

H.-G. Kempfert, Konstanz

Calculation of rigid, laterally loaded piles

Contents. On the basis of numerous test results from the literature and from in-house model tests and by comparison with available analytical methods this paper describes validated methods for the calculation of nearly rigid, laterally loaded piles, considering cases of place and inclined ground surface. Beyond that experiences from model and in-situ tests have been summarized.

1 Einleitung

Horizontal belastete, kurze Pfähle werden in der Baupraxis häufig ausgeführt, so z. B. für die Gründung von Lärmschutzwänden, Fahrlieferungs- und Signalmasten sowie Dämmen. Da das Tragverhalten dieser Gründungskörper in der Form von Bohrfählen, Rammpfählen oder anderen Ausführungen nicht wesentlich voneinander abweichen, kann im folgenden auf die Unterscheidung zwischen den Pfahlarten für praktische Fälle verzichtet werden. Voraussetzung ist ein nahezu starrer Verhalten der Gründungselemente.

Im folgenden werden zur Dimensionierung kurzer, horizontal belasteter Pfähle einige Untersuchungsergebnisse mitgeteilt und Empfehlungen für die praktische Berechnung gegeben. Das System und die verwendeten Bezeichnungen sind im Bild 1 dargestellt und durch folgende Randbedingungen gekennzeichnet:

- Der Pfahl hat eine äußere quasistatische Horizontal- und Momentenbelastung (einwirkende Belastung) in Höhe

Dr.-Ing. Hans-Georg Kempfert ist Professor an der Fachhochschule Konstanz und leitet das Sachgebiet Geotechnik der Öffentlichen Prüfstelle.

Bild 1. System und Bezeichnungen

der Geländeoberfläche in den Baugrund abzutragen. Die Vertikallast ist demgegenüber von untergeordneter Bedeutung.

- Die Einspannwirkung resultiert vorwiegend aus Normal- und Tangentialspannungen am Pfahl. Der Einfluß der Sohlreaktion in der Pfahlfußebene ist dabei gering.

- Die Mobilisierung der Baugrundreaktion setzt Horizontalverschiebungen voraus, die aus einer Bewegung des Pfahls um einen Drehpunkt resultieren. Der Drehpunkt liegt oberhalb der Gründungssohle und kann sich während des Belastungsvorganges verschieben.

- Die Biegeverformungen des Pfahls sollen vernachlässigbar klein sein, so daß vorwiegend Starrkörperverschiebungen wirksam sind.

Weiterführende Untersuchungen finden sich in [10], worin auch Ergebnisse und Erfahrungen bei der Berechnung im Baugrund eingespannter Gründungskörper nach der Methode der finiten Elemente enthalten sind.

2 Überblick zu den vorhandenen Berechnungsverfahren

2.1 Zur Bestimmung der Bruchlast H_f

Die in [10] ausführlich dargestellten Grundlagen der vorhandenen Berechnungsverfahren für die Bestimmung der Bruchlast H_f (Traglast, Grenzlast) wurden anhand von Berechnungsbeispielen mit Parametervariation zunächst für den
Fall der ebenen Geländeoberfläche untereinander verglichen. Als Baugrund wurde ein nichtbindiger und ein bindiger Boden ausgewählt. Ausgehend von einer Breite \(b = 0,5 \) m und 1,0 m des Pfahls wurden die Einbindelänge \(l \) und die Höhe des waagerechten Lastangriffes \(h \) variiert. Die auf eine quadratische Grundrißform mit der Breite \(b \) bezogenen Berechnungen wurden für Verfahren, die mit runden Grundrißformen arbeiten, auf Ersatzdurchmesser nach Gl. (1) umgerechnet.

\[
\begin{align*}
d_{en} &= \sqrt{\frac{4 \cdot b^2}{\pi}} \\
b_{en} &= \sqrt{\frac{\pi \cdot d^2}{4}}
\end{align*}
\]

(1)

Die in dimensionsloser Form dargestellten Berechnungsergebnisse enthält Bild 2.

2.2 Zur Berechnung des Verformungsverhaltens

Die vorhandenen Berechnungsansätze zum Verformungsverhalten, vornehmlich Betonmodul- und Halbraumverfahren, sind für die Dimensionierung der äußeren Abmessungen

Bild 2 a und b. Berechnungsbeispiele zur Bestimmung der Bruchlast \(H_f \) mit verschiedenen Verfahren. ▲ Blum; △ Colling; ● Brinch Hansen; ○ Broms; ■ Weißenbach; □ DIN 4085; + Blockfundament; † Paul; ——— \(b = 0,5 \) m; ——— ——— \(b = 1,0 \) m
kurzer, horizontal belasteter Pflähle nur wenig geeignet. Das Verformungsverhalten kann nur dann zutreffend beschrieben werden, wenn die Bettungsmodulgrößen und -verteilungen für den zu untersuchenden Lastbereich auf der Grundlage von Probebelastungen ermittelt werden. Diese Verfahren haben eine größere Bedeutung bei der Schnittkraftermittlung vornehmlich von Schlankten Pflächen oder dann, wenn keine sehr hohen Ansprüche an die Genauigkeit der errechneten Verschiebungen und Verdrehungen gestellt werden.

3 Modell- und Großversuche

Die systemrelevanten Einflußparameter lassen sich unter Verwendung von dimensionslosen Größen für das vorliegende System in eine allgemeine mathematische Form bringen. Diese Form kann z. B. für nichtkohäsive Böden lauten:

$$\frac{u_0}{b} = f\left(\frac{H}{\gamma_0 b^2}, \frac{h}{b}, \frac{a}{b}, \frac{\lambda}{\beta}, \frac{\varphi}{\beta}, ST \right)$$ (2)

Die in Gl. (2) enthaltenen Größen sind in Bild 1 dargestellt. γ_0 bezeichnet die Wichte des Bodens bei Belastungsbeginn, $\lambda = l/b$ bzw. l/d die Schlankheit, und in dem allgemeinen Parameter ST sollen weitere Stoßeffigenschaften zusammengefaßt sein.

Eine Gegenüberstellung von Versuchen mit quadratischen und runden Pfahlquerschnitten der Abmessungen $b = d$ und sonst gleichen Randbedingungen zeigte, daß das Tragverhalten der runden Pfähle nur etwa das 0,81- bis 0,84fache von quadratischen Pfählen aufweist und somit etwa der übliche Ansatz nach Gl. (1) mit $\sqrt{\pi/4} = 0,88$ bestätigt wurde.

Bevor im folgenden Abschnitt aus den ausgewerteten Ergebnissen für praktische Fälle ein Berechnungsverfahren empfohlen wird, ist darauf hinzuweisen, daß das hier behandelte Pfahltragverhalten sehr sinnvoll ist und mit einem relativ geringen Kostenaufwand durchgeführt werden können. Damit lassen sich oftmals wirtschaftliche Dimensionierungsansätze ermitteln. Bild 3 zeigt
als Beispiel eine Probelaufungseinrichtung für eine Lärm-
abschwungbedingung mit einem Pfahl an einer Böschung und
und einem Pfahl bei ebener Geländeoberfläche nebeneiner
Eisenbahnstrecke. Andere einfache Belagungenseinrichtungen
lassen sich erreichen mit einer Abstützung der Pressen gegen
einen ballastierten Container oder unmittelbar gegen die
Streifendecke, wenn diese bereits eingebaut ist.

4 Empfohlenes Berechnungsverfahren

4.1 Vergleich der Versuchsergebnisse mit den vorhandenen
Berechnungsansätzen

Aus den in Abschn. 3 angesprochenen 136 Modell- und
Großversuchen wurden zunächst 64 Versuche bei vorhandene-
er ebener Geländeoberfläche mit den in Abschn. 2 ausge-
führten Verfahren zur Berechnung der Bruchlast verglei-
chend geprüft. Für jedes Verfahren wurden dabei die erreich-
ten Bruchlasten calH_f mit den Versuchswerten H_f nach
der Beziehung in Gl. (3) für die prozentualen Abweichungen
zwischen Versuch und Berechnung verglichen:

\[A_f = \frac{H_f - \text{calH}_f}{H_f} \cdot 100 \% \]

Bei der Bewertung der Ergebnisse ist zu berücksichtigen,
 daß die in die Berechnung eingehenden Scherparameter der
Versuchsdatenmaterialien in unterschiedlichster Form bestimmt
und teilweise sogar nur abgeschätzt wurden. Für die eigenen
Versuche konnten diese Parameter spannungsabhängig er-
mittelt werden. Die Ergebnisse zeigen erwartungsgemäß
größe Streuungen. Besonders für Böden mit größerer Kohäsion
liegen die meisten Verfahren auf der unsicheren Seite,
so daß der Anteil aus der Kohäsion rechnerisch überschätzt
wird. Bei der Dichtetheorie unter Verwendung des passiven
Erdrucks nach Weißenbach sind die Streuungen für Böden
mit und ohne Kohäsion einheitlicher und die zahlenmäßigen
Abweichungen abhängig vom gewählten Wandreibungswin-
kel. Dies liegt u.a. auch darin begründet, daß nach einer
Empfehlung von Weißenbach [16] in dem Verfahren nur die
halbe Kohäsionsgröße rechnerisch berücksichtigt wird.

Bild 4 zeigt als Beispiel den Vergleich für das letztge-
nannte Verfahren bei ebener Geländeoberfläche. Die Sym-
bole in Bild 4 charakterisieren verschiedene Versuchsserien.

Die Regressionsgerade unterscheidet sich nur geringfügig
von der Nulllinie, ist aber wegen der großen Streuungen
statistisch wenig abgesichert. Unter Berücksichtigung, daß
die Versuche von verschiedenen Verfassern mit unterschiedli-
chen Versuchstechniken und Materialien durchgeführt wor-
den sind, können die Streuungen akzeptiert werden, zumal
es sich hier um die Berechnung von Bruchlasten handelt.

Für die Berechnungen bei geneigter Geländeoberfläche
wurden die den Ansätzen nach Weißenbach zugrundelege-
den Erdwiderstandsbeiwerte von Streck in [10] auch für die-
en Fall abgeleitet. Damit wurden dann die o.g. restlichen
72 Versuchsergebnisse rechnerisch mit Gl. (3) überprüft und
insgesamt auch für diesen Fall eine Brauchbarkeit des Ver-
fahrens festgestellt.

4.2 Empfohlenes Verfahren für einfache Fälle

Aufgrund der Ergebnisse nach Abschn. 4.1 kann für die
Dimensionierung kurzer, horizontal belasteter Pfähle für ein-
fache Fälle die Dalbenthese mit passivem Erdruckansatz
nach Weißenbach verwendet werden. Das Verfahren ist für
auf eine geneigte Geländeoberfläche erweitert worden. Da-
mit kann die horizontale Bruchlast H_f geschlossen mit ein-
fachen Formeln berechnet werden.

Der Begriff einfache Fälle wird hier wie folgt verstanden:

a) Im Bereich des Pfahls sind weitgehend homogene Bau-
grundverhältnisse vorhanden oder können durch gemittelte
Bodenkenngrößen zutreffend beschrieben werden.

b) Das Bauwerk ist so weit verformungsunempfindlich,
 daß eine grobe Abschätzung zum Last-Verschiebungsverhal-
ten ausreichend ist.

Die Anwendungsgrenzen des nachfolgend dargestellten
Verfahrens, siehe Bild 6, ergeben sich zu \(\varphi < \beta \). Bei größeren
Kohäsionsanteilen sind negative Böschungsneigungen
(\(-1\) \(\cdot \beta > \varphi \)) in der Praxis nicht ausgeschlossen, so daß
dabei für die Anwendung des Verfahrens näherungsweise äquiva-
lente Ersatzscherspannung \(\varphi_{eq} > (\beta - \beta \cdot \varphi_{eq} \text{ aus dem}
Mohr-Couombschen Gesetz bestimmt werden können. Die
dabei anzusetzende maßgebliche Spannung \(\sigma \) kann nähe-
rungsweise entsprechend Bild 5 ermittelt werden.

Gegenüber den Ausführungen in [10] kann als weitere
Vereinfachung unter der Voraussetzung ausreichender Si-
chheitsbeiwerte gegen die Bruchlast H_f das Verfahren, wie
in Bild 6 zusammengefaßt dargestellt, verwendet werden
und wegen \(\delta_s = -\varphi/3 \) und der dadurch nur geringen Unter-
schiede zwischen den Erdwiderstandsbeiwerten nach Streck
bzw. Coulomb mit \(K_{ph} \) nach DIN 4085 gerechnet werden,
wobei die entsprechenden Geländeneigungen \(\beta \) zu berück-

\[R = -3,241 + 0,359 \cdot \varphi ; \varphi \geq 0,10 \]

Bild 4. Vergleich zwischen Versuch und Berechnung nach der
Dalbenthese mit passivem Eindruck nach Weißenbach für
\(\delta_s = -1/3 \cdot \varphi \) und ebener Gelände \(\beta = 0 \)

\[M \]

Bild 5. Maßgebliche Spannung \(\sigma \) zur Bestimmung von Ersatz-
scherparameter
<table>
<thead>
<tr>
<th>Berechnung der Erdwiderstandswerte für $\delta_p = -\psi/3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vor dem Grundungskörper</td>
</tr>
<tr>
<td>K_{pn} nach DIN 4085 als $f(\beta)$ mit $\beta \geq 0$</td>
</tr>
<tr>
<td>b) Hinter dem Grundungskörper</td>
</tr>
<tr>
<td>K_{pn} nach DIN 4085 mit $\beta = 0$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bereich $\lambda = t_0 / \beta \geq 3.3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufnehmbare Lasten H_f bzw. äußere Abmessung der Grundungskörper</td>
</tr>
</tbody>
</table>

| $\mu_1 = 0.5 \cdot t \cdot K_{ps} \cdot (10.3 - 0.6 \cdot \tan \psi) \cdot \sqrt{t}$ |
| $\mu_2 = c \cdot 1.826 \cdot \sqrt{K_{ps} \cdot (1.2 + 0.9 \cdot \tan \psi) \cdot \sqrt{t}}$ |
| $H_r \cdot (h + t) - t_2 = 0.286 \cdot \mu_1 \cdot t_2 + 0.4 \cdot \mu_2 \cdot t_2 = 0$ |

| Bemessungsmoment M_{max} |

| $\max M = H \cdot (z + z_n) - z_2^2 \cdot (0.286 \cdot \mu_1 \cdot z_n + 0.4 \cdot \mu_2)$ |
| z_n iterativ aus |
| $H - (\mu_1 \cdot z_2^2 + \mu_2 \cdot z_2^2 + \mu_3 \cdot z_2^2) = 0$ |

Anmerkung: Ab $\beta \geq \psi/3$, d.h. zunehmender negativer Geländeeneig, darf unabhängig von λ wie für $\lambda \geq 3.3$ gerechnet werden.

Bild 6. Formulareinsammlung zum empfohlenen Berechnungsverfahren.

Für die Berechnung nach dem Schema in Bild 6 ist als grundsätzliches Merkmal die Schankheit $\lambda \geq 3.3$ bzw. < 3.3 zu unterscheiden. Ein Berechnungsbeispiel folgt am Schluß dieses Abschnittes. Die Gesamtlänge l des Pfahls darf im Verfahren nach Bild 6 näherungsweise mit Gl. (4) bestimmt werden (Vorzeichen von β negativ).

\[l = (1.2 + 0.18 \cdot \tan \beta) \cdot t_0 \tag{4} \]

mit t_0 nach Bild 6.

Das empfohlene analytische Verfahren für einfache Fälle liefert zunächst die Bruchlast H_f. Aus den in Abschn. 3 beschriebenen Versuchsergebnissen geht hervor, daß das Erreichen der Bruchlast im allgemeinen mit großen Verschiebungen und Verdrehungen des Pfahls verbunden ist. Für die Bemessung im Gebrauchszustand ist deshalb die Kenntnis einer Mobilisierungsfunktion erforderlich. Eine Auswertung der Lastverschiebungskurven der in Abschn. 3 beschriebenen Versuche zeigt im Hinblick auf die Verdrehung ψ_0 (Bild 1) der Pfähle folgende Ergebnisse:

a) Erdfeuchte nichtbindige und bindige Böden. Bei einer Pfahldurchmehrung von etwa $\psi_0 = 1^\circ$ zeigen die Last-Verschiebungskurven i.d.R. eine sehr starke Krümmung. Die diese Verdrehung zugeordnete Last H_f kann aus den Versuchen dadurch bestimmt werden, daß die Bruchlast H_f mit einem Sicherheitsbeiwert η_f belegt wird und ergibt sich näherungsweise wie folgt:

- locker bis mitteldichte nichtbindige und steife bindige Böden

\[\eta_f \approx 1.5 \tag{5} \]

- mitteldichte bis dichte nichtbindige Böden

\[\eta_f \approx 1.3 \tag{6} \]

Im Bereich zwischen einer Verdrehung $\psi_0 = 0$ und 1° sind die Streuungen der Versuchsergebnisse gering und es läßt sich dafür nach [10] eine hyberbelförmige Mobilisierungsfunktion angeben. Diese Funktion ist in Gl. (7) eingearbeitet, so daß damit die zulässige Belastung $zul H$ abhängig von den zulässigen Verdrehungen ψ_0 im Gebrauchszustand bestimmt werden kann.

\[zul H = \frac{2 \cdot zul \psi_0 \cdot H_f}{\eta_f \cdot (1 + zul \psi_0)} \tag{7} \]

Eine ähnliche Mobilisierungsfunktion wie Gl. (7) geben Coyle et al. [5], siehe auch [9], für wassersattigte bindige Böden (C_2-Böden) an. Gl. (7) gilt näherungsweise unabhängig von den Baugrundverhältnissen, den Abmessungen der Pfähle und von der Geländeeneig β.

Die zugehörigen Größenordnungen der Verschiebungen u_0 in Höhe der Geländeoberfläche können mit einer ange-
nommenen bezogenen Tiefenlage des Drehpunktes l_0/l von etwa 0,7 bis 0,8 für $\beta = 0$ abgeschätzt werden. Mit zunehmender negativer Geländeneigung ist eine Drehpunktlage bis $l_0/l = 0,9$ möglich.

Unabhängig von den Verdrehungen φ_0 kann auch die zulässige Belastung mit einem globalen Sicherheitsbeiwert η nach Gl. (8) ermittelt werden.

$\zul H = \frac{H_f}{\eta}$ \hspace{1cm} (8)

In den bisherigen Ausführungen wurde von einer quasistatischen Belastung ausgegangen. Bei zyklischen Schwell- und Wechselbelastungen sind in der Regel mit zunehmenden Belastungszyklen ein Zuwachs der Verschiebungen und Verdrehungen des Pfahls zu erwarten [8]. Aufgrund dieser Zusammenhänge erscheint deshalb auch bei einfachen Bauwerken, an die keine genau Verformungsanforderungen gestellt werden, bei zyklischer Belastung zur globalen Abdeckung dieser Einflüsse eine Sicherheit $\eta = 2,5$ bis 3,0 nach Gl. (8) empfehlenswert.

4.3 Berechnungsbeispiel

Für den Gründungsfach einer Lärmschutzwand im Straßenbau möge eine Lastgruppe 1 aus dem Erdruck auf den Randbalken und eine Gruppe 2 aus der Belastung der Wand wie folgt am Pfahlkopf angreifen: $M_1 = 4,4 \text{ kNm}$, $H_1 = 9,1 \text{ kN}$, $M_2 = 81,7 \text{ kNm}$, $H_2 = 31,3 \text{ kN}$. Die resultierenden Lasten geben sich zu $\Sigma M = 86,1 \text{ kNm}$ und $\Sigma H = 40,4 \text{ kN}$. Daraus errechnet sich die Höhe des Lastangriffspunktes zu $h = \frac{\Sigma M}{\Sigma H} = 2,13 \text{ m}$. Der Pfahlendurchmesser sei 0,80 m; mit Gl. (1) ergibt sich $b_{\text{er}} = 0,71 \text{ m}$.

Die Bodenkenngrößen sind mit $\gamma = 20 \text{ kN/m}^3$, $\varphi = 27,5^\circ$, $c = 10 \text{ kN/m}^2$ vorgegeben. Gesucht ist hier die Pfahl- dimensionierung unter einer im Straßenbau häufig gewählten Vorgabe von 1% Pfahldräumverdrehung im Gebrauchszustand, das entspricht $\varphi_0 = 0,57^\circ$. Die Böschungsneigung möge zwischen einer Neigung $1:3$ und $1:1,5$ liegen.

Unter Vorgabe von Gl. (5) läßt sich aus Gl. (7) die zugehörige H_f ermitteln:

$H_f = \frac{40,4 \cdot 1,5(1 + 0,57)}{2 \cdot 0,57} = 83,5 \text{ kN}$.

Da nach Bild 6 einige Iterationen zur Ermittlung von t_0 und z_m notwendig sind, empfiehlt sich die Programmierung der Gleichungen z. B. auf einem Taschenrechner.

Böschungsneigung $1:1,7$:

Nach Bild 6 ergeben sich die Festwerte $K_{ph} = 3,54$; $\mu_1 = 33,6$; $\mu_2 = 48,3$; $\mu_3 = 11,1$; $\mu_4 = 50,9$; $\mu_5 = 13,4$ und nach einigen Iterationen (\(\beta > 3,3\)) $\phi_0 = 2,4 \text{ m}$. Aus Gl. (4) errechnet sich die Pfahlendverdrehung $|\beta| = 2,88 \text{ m}$. Wiederum aus einer Iteration ist $z_m = 0,68 \text{ m}$ und daraus

$\max M = 40,4(2,13 + 0,68) - 0,68^2 \cdot (0,286 \cdot 33,6 + 0,68 + 0,4 \cdot 48,3) = 103,7 \text{ kNm}$

Böschungsneigung $1:1,7(\beta \approx 30,5^\circ)$:

K_{ph}-Werte lassen sich nur bis $\beta \leq [27,5] = \varphi$ bestimmen. Aus einer Vorabschätzung mit $\beta \approx 4,3 \text{ m}$ ergibt sich eine maßgebliche Spannung nach Bild 5 zu $\sigma = 20 \cdot 4,3 \cdot 2/3 = 57,3 \text{ kN/m}^2$. Für $\sigma_{\text{er}} > \beta = 31^\circ$ darf näherungsweise aus der Mohr-Coulombschen Bedingung $c_{\text{er}} = \sigma (\tan \varphi - \tan \varphi_{\text{er}}) + c$

$= 57,3(\tan 27,5^\circ - \tan 31^\circ) + 10 = 5,4 \text{ kN/m}^2$

angesetzt werden. Wegen $\beta \leq \varphi/3$ ist nach Bild 6 wie für $\beta < 3,3$ zu rechnen. Daraus ergeben sich die Festwerte $K_{ph} = 0,87$; $\mu_1 = 3,1$; $\mu_4 = 13,4$; $\mu_5 = 3,6$ und nach entsprechender Auswertung der Gl. in Bild 6 $t_0 = 3,98 \text{ m}$, daraus mit Gl. (4)

$l = (1,2 + 0,18 \cdot tan(-30,5^\circ)) \cdot 3,98 = 4,35 \text{ m}$,

sowie $z_m = 1,40 \text{ m}$ und $\max M = 128 \text{ kNm}$.

Alle Berechnungsergebnisse für die Variation der Böschungsneigung von $1:0$ bis $1:1,5$ sind in Bild 7 dargestellt.

4.4 Berücksichtigung von geschichtetem Baugrund

Treten im Einspannbereich des Pfahls Baugrundschichtungen auf, so kann das in Abschn. 4.2, Bild 6, empfohlene Verfahren näherungsweise mit gewichteten Mittelwerten der Bodenkenngrößen angewendet werden, wenn die einzelnen Schichtparameter nicht zu sehr vom Mittelwert abweichen.

\[\frac{dF_{ph}}{d\varphi} = 3 \cdot \mu_3 \cdot t_0^5 + \mu_4 \cdot t_0 + \mu_5 \quad (8a) \]

\[\frac{dF_{ph}}{d\varphi} = 2,5 \cdot \mu_1 \cdot t_0^3 + 1,5 \cdot \mu_3 \cdot t_0^5 \quad (8b) \]

iterativ mit den Gleichgewichtsbedingungen ΣM und ΣH die Tiefenlage des Drehpunktes und die aufnehmbare Bruchlast zu ermitteln.

5 Schlussfolgerungen

Mit den in Abschn. 4 empfohlenen Berechnungsverfahren steht ein einfacher Ansatz für die Dimensionierung kurzer, horizontal belasteter Pfähle oder ähnlicher Gründungskör-
per zur Verfügung, der durch den Vergleich mit Versuchsergebnissen abgesichert ist und durch die genannte Mobilisierungsfunktion auch den Gebrauchslastbereich beschreiben kann. Gegenüber dem bisher häufig verwendeten Verfahren von Blum [1] können kohäsive Böden und eine Geländeneigung berücksichtigt werden. Oftmals bleibt zunächst, warum zur besseren Übereinstimmung mit den Versuchsergebnissen nur die halbe Kohäsion anzusetzen ist. Dies wurde bereits in die Formeln nach Bild 6 eingearbeitet. Desweiteren sind Anstrengungen zur wirklichkeitsnahen und theoretisch begründeten Erfassung des Erdwiderstandes für den Fall $c \neq 0$ und $\phi < (1 - \beta)$ wünschenswert.

Literatur

7. DIN 4085: Baugrund; Berechnung des Erddrucks, Ausgabe Februar 1987

Messungen an einer Pfahl-Plattengründung in weichem Fels

Einführung. Das 42stöckige Hauptgebäude der Port of Singapore Authority (PSA) besteht aus einer 183 m hohen Stahlbetonkonstruktion, deren Gründungsohle 7 m tief in den anstehenden Baugrund einbunde.

Die Lasten aus dem Überbau werden über einen aussteifenden Kern, Wände und eine Reihe von Stützen auf die Gründungsplatte übertragen (Bild 1).

Um unzulässige Setzungen und insbesondere Setzungsdiffe- renzen zu vermeiden, sind unterhalb der 2 m dicken Grün- dungsplatte insgesamt 202 Bohrpfähle mit verschiedenen Durchmessern ($d = 1.15$ m bis 1.5 m) und Pfahlängen ($l = 7$ m bis 13 m) angeordnet worden.

Baugrund. Der anstehende Baugrund besteht im wesentlichen aus Sedimentgesteinen: verwitterter Sandstein, Schluffmelgel und Schiefer. Bild 2 zeigt ein für den Baugrund typisches Bohrprofil.

Die besonders problematisch sind die verschiedenen Grade der Verwitterung und Klüftigkeit der einzelnen Gesteinsformationen, so daß die Festigkeit des Untergrundes sehr stark variiert.

Messprogramm. In die geplante Gründungskonzeption wurden umfangreiche MeBeinrichtungen installiert. In 25 der 202 Bohrpfähle wurden die Längsdehnungen mit Hilfe des Schwingsätten- medverfahrens gemessen. Zur Ermittlung der Kontaktpressun-
Bild 3. Lage der eingebauten Messinstrumente

Bild 4. Verteilung der Pfahl- und Plattenlasten im Schnitt M nach Bild 3

Bild 5. Verteilung der Pfahl- und Plattenlasten im Schnitt N nach Bild 3

Lastverteilung Platte – Pfähle
Die Platte trägt lediglich während der frühen Bauphase einen Großteil der Überbaulasten ab, mit zunehmender Bauzeit sinkt der Lastanteil der Gründungsplatte bis zur Fertigstellung des Gebäudes auf einen Anteil von nicht mehr als 5% ab.

Verteilung der Pfahllasten
Die von den Pfählen abgetragenen Lasten variieren zwischen 3,9 und 12 MN, wobei die gemessenen Speitendrücke zwischen 2,1 und 4,3 MN schwanken. Es wurden Mantelreibungswerte von 80 bis 460 kPa aktiviert; der hohe Schwellungsbereich ist auf die Inhomogenität der Gesteinschichten im Untergrund zurückzuführen.

Die von den Stützen im Erdgeschoß auf die Platte übertragenen Lasten wurden zum überwiegenden Teil direkt von den unterhalb der Stützen angeordneten Ser-Pfahlgruppen übernommen. Dabei waren die Lasten der äußeren – zum Plattenrand liegenden – Gruppenpfähle größer als die der inneren angeordneten Pfähle.

Die Verteilung der Gesamtlasten aus dem Überbau zeigt, daß die größten Pfahlkräfte unterhalb des aussteifenden Kerns und der in der Peripherie angeordneten Stützen aktiviert wurden, während in nicht direkt belasteten Plattenbereichen die Pähle wesentlich kleinere Lasten aufnahmen.

T. Voß, Kassel